REPORT OF GREEN CAMPUS AUDIT

Submitted to

Dr.N.G.P.ARTS AND SCIENCE COLLEGE Coimbatore – 641 048, Tamil Nadu, India.

Date of Audit: 27.06.2018 (Wednesday)

Submitted by

NATURE SCIENCE FOUNDATION (A Unique Research and Development Centre for Society Improvement)

An ISO 9001:2015 Certified Organization LIG-II, 2669, Gandhi Managar, Peelamedu Coimbatore - 641 004, Tamil Nadu, India. Phone: 0422 2510006, Mobile: 9566777255, 9566777258 Email: director@nsfonline.org.in, directornsf@gmail.com *Motto*

'Save the Nature to Save the Future' & 'Go Green to Save the Planet'

Contents

S.No.	Details of Reports	
1.	Introduction	
2.	Aims and Objectives of Green Campus Audit	1
3.	Scope and Goals of Green Auditing	2
4.	About the Organization	3
5.	Audit Details	4
6.	Procedures followed in Green Campus Audit	4
6.1.	Study of Flora and Fauna diversities at Dr.N.G.P.ASC Campus	5
6.2.	Documentation of Plant species at Dr.N.G.P.ASC Campus	6
6.3.	Documentation of Animal species at Dr.N.G.P.ASC Campus	
7.	Green Campus Audit Observations	
7.1.	Flora and Fauna diversity in Dr.N.G.P.ASC Campus	10
7.2.	An account of more Oxygen producing and Carbon dioxide	
	absorbing plants in the Campus	
7.3.	Rainwater Harvesting System	17
8.	Best practices followed on Green Campus initiatives in the	18
	Organization	
9.	Recommendations for Greening	19
10.	Acknowledgement	19
11.	References	19

1. Introduction

Green campus is an area of the Organisation or the Organisation as a whole itself contributing to have an infrastructure or development that is structured and planned to incur less energy, less water, less or pollution free, less or no CO₂ emission (Aparajita, 1995). Green Campus Audit is a tool of the environment management system which is used methodologically for protection and conservation of environment and sustenance of the ecosystem. Green campus constitutes the environmental friendly practices and education combined to promote sustainable and eco-friendly practices along with user-friendly technology in the campus. It creates environmental culture, develops sustainable solutions to environmental problems and provides solutions to various social and economic needs (APHA, 1981). It provides the concept of Green building and oxygenated building which in turn provides a healthy atmosphere to the stakeholders.

Green Campus Audit ensures the Organization's campus should be greenish with large diversity of trees, herbs, shrubs, climbers and lawns to reduce the environmental pollution and soil erosion, also useful for biodiversity conservation, landscape management, proper water irrigation, natural topography and vegetation (Gowri and Harikrishnan, 2014). The maintenance of an eco-friendly campus ensures a neat and clean environment. For the benefit of stakeholders, solid state management, recycling of water, disposal of sewage and waste materials including electronic and biomedical wastes, plastic use, etc. should be followed consistently in the organization campus.

Green Campus Audit procedures includes the definition of green audit, methodology on how to conduct Green audit at Educational Institutions and Industrial sectors as per the checklist of Environment Management Systems and International Standards on ISO 14001:2015, Indian Green Building Council, Swachh Bharath Scheme under Clean India Mission to understand the principles and importance of various audits in the context of the organization and risk assessment at 360° views (Gnanamangai *et al.*, 2018). It analyses to help the educational institutions and industries to maintain eco-friendly environment and personal hygiene to various stakeholders and supports the nation as a whole for the noble cause of environmental protection and nature conservation which in turn enhances the quality of life to all living beings (Arora, 2017).

2. Aims and Objectives of Green Campus Audit

- To recognise the initiatives taken towards the green campusby means of gardening by the Organization.
- To identify and provide baseline information to assess threat and risk to the ecosystem due to Organization development.
- To recognise and resolve different environmental threats of the Organization.
- To grow a large number of oxygen producing and carbon-di-oxide absorbing plants in the campus to give a pure atmosphere to the stakeholders.
- To ensure proper utilization of resources available in the surrounding areas towards future welfare of the community.
- To set a procedure for disposal of all kinds of wastes and use green cover as a carbon sink for pollution free air.

• To assess the greenish nature of an Organization campus in terms of trees, herbs, shrubs, climbers, twins, lianas, lawns and reflected in reducing the environmental pollution soil erosion, biodiversity conservation, landscape management, natural topography and vegetation.

3. Scope and Goals of Green Auditing

The Management of the Organization (Auditee) should be shown their inherent commitment towards making ecofriendly atmosphere through the green auditing and ready to encourage all types of green activities. They should promote all kinds of green activities such as conduct of environment awareness programmes, campus farming, planting trees, maintenance of greening, irrigation, use of biofertilizers and avoidance of chemical fertilizers and agrochemicals on the campus etc., before and after the green auditing. The management should formulate 'Green and Environment Policies' based on green auditing report. A clean and healthy environment should enhance an effective teaching and learning process and provides a conducive learning environment to the stakeholders. They should create the awareness on the importance of environment through environmental education among the student members. Green Audit is the most efficient and ecological way to manage environmental problems (IGBC, 2018).

Green campus audit may be beneficial to the campus in improving the greenery activities which in turn useful to save the planet for future generation. Green campus audit is a kind of professional care and a simple indigenized system about the environment monitoring in terms of planting a large number of trees which is the responsibility of each and every individual who are the part of economical, financial, social, environmental factors. It is necessary to conduct green audit frequently at least once in three years in campus because students and staff members should aware of the green audit and its advantages to save the planet by means of 'Go green concept' and help the institution to set environmental examples for the community, and thereby to educate the young learners.Green audit is a professional and useful tool for an Organization to determine how and where they are maintaining the campus eco-friendly manner (WGBC, 2018). It can also be used to implement the mitigation measures is a win-win situation for all the stakeholders and the planet. It gives an opportunity for the development of ownership, personal and social responsibility for the stakeholders.

Green campus audit is nothing but a professional tool to assess the greenery activities in the educational institutions and give a value addition to the campus and considered as a resource management process. Eco-campus concept mainly focuses on the efficient use of energy and water; minimize waste generation or pollution and also economic efficiency (Pradip and Patil, 2014). Green campus audit process may be undertaken at frequent intervals and their results can illustrate improvement or change over time. There are several target listed in the Green audit process in which a few are taken into consideration as per the Indian scenario is concerned. Eco-campus focuses on the reduction of carbon emissions, water consumption, wastes to landfill and enhance energy use conservation to integrate environmental considerations into all contracts and services considered to have significant environmental impacts.

4.About the Organization

With a view to providing education to all, Dr. N.G.P. Arts and Science College was established by the Kovai Medical Center Research and Educational Trust, Coimbatore in 1997. The Founder and Chairman Dr.Nalla G. Palaniswami, and Secretary Dr.Thavamani D. Palaniswami are the driving force of the institution. The College began its educational journey with 4 Under Graduate programmes, now it is emerging as the one of the top self-financing colleges in Tamil Nadu.

It is a Co-Educational Autonomous College, affiliated to the Bharathiar University, Coimbatore. Also, it is recognized under 2(f) and 12(B) of UGC act 1956 by University Grants Commission, New Delhi. The college was accredited by the NAAC with "A" Grade with the CPGA of 3.17 in the second cycle, March 17, 2016. The college is consecutively ranked at the national level within 100 ranks by the National Institutional Ranking Framework (NIRF) by MHRD. The College is also granted the DST-FIST to enrich the research facilities. The college, at present offers 26 UG, 13 PG, 8 M.Phil & 9 Ph.D programmes. Our college has an intellectual capital of more than 294 academically well experienced teaching fraternity amongst 91 faculty members are doctorates and they cater to the needs of 6391 students on roll.

The Institution has been granted funds to undertake major and minor research projects, and conduct seminars, conferences and workshops by various funding agencies like UGC, DRDO, ICMR, ICSSR, CSIR, DST, DBT and TNSCST. The College exercises 43 Best Practices to aggrandize the holistic development of the students. Through these practices students have been given space for enhancing employability skills, research culture, and entrepreneurship attitude.

The Training and Placement Cell in the college functions effectively in providing various placement oriented training, value added programmes, company specific training to make them employable in the top MNCs. Every year, more than 90% placement opportunities are achieved. Apart from the placement cell, the Career Guidance Cell, Entrepreneurship Development Cell play vital role in fulfilling needs of the student community. The Management provides scholarships every year to 100s of meritorious students in academics and sports as well. It creates opportunities for many students to excel in education who belong to socially economically weaker section. The College firmly believes that the blend of discipline and education will make the students enter the present phenomenon with the flying colours.

Dr. N.G.P. Arts and Science College is maintaining more green cover area and open unutilized landfills zone after building construction as per the guidelines of World Green Building Council, Indian Green Building Council, Environmental Regulations and Compliances.

5. Audit Details	:27.06.2018 (Wednesday)	
Date / Day of Audit:27.06.2018 (Wednesday)Venue of Audit:Dr.N.G.P Arts and Science College		
Coimbatore - 641 048, Tamil Nad	8	
Audited by	:Nature Science Foundation,	
A 1 • <i>/ /</i>	Coimbatore - 641 004, Tamil Nadu, India.	
Audit type	:Green Campus Audit	
Name of ISO EMS Auditor	:Mrs. S. Rajalakshmi,	
	Chairman, ISO QMS & EMS Auditor, NSF.	
Name of Lead Auditor	:Dr. R. Mary Josephine,	
	Board of Directors & Botanist, NSF.	
Name of Subject Expert-I	:Dr. D. Vinoth kumar,	
	Joint Director & Biotechnologist, NSF.	
Name of Subject Expert-II	:Dr. V.S. Ramachandran,	
	Professor (Retired) in Botany,	
	Bharathiar University, Coimbatore.	
Name of IGBC AP Auditor	:Dr. B. Mythili Gnanamangai,	
	IGBC AP, Indian Green Building Council.	
Name of ASSOCHAM Auditor	or : Er. Ashutosh Kumar Srivastava,	
	Associated Chambers of Commerce and Industry	
Name of Eco & Green Officer	r 🛛 : Ms. S. Sowndharya,	
	Eco & Green Council Programme Officer, NSF.	
6. Procedures followed in Green Campus Audit		

6. Procedures followed in Green Campus Audit

Green campus audit is a structured process of documenting the credentials in terms of number of trees, herbs, shrubs, lawns, climbers and lianas reflected in reducing the environmental pollution and soil erosion and useful for biodiversity conservation, landscape management, natural topography and vegetation. It is a kind of a professional tool for assessing the green campus. Green audit projects the best environmental practices and initiatives taken in the organisation at the prescribed site of audit that brings added value to the organisation in maintaining the eco-friendly campus to the stakeholders. The first step of the audit is ensuring that the organisation has a central role in building the green campus, in order to validate the same (Adeniji, 2008).

Green campus is not intended for the self-sustainability of the building alone, it

also involves in propagation of the green campus initiatives so as to be adopted by any individuals and organization at a minimum cost. Green campus audit has been conducted as per the checklist of Nature Science Foundation, Coimbatore, Tamil Nadu, India (www.nsfonline.org.in) through the authenticated Professionals for people qualified to investigate and evaluate the campus for validating the best environmental practices. Professional team of ISO Environment Management Audit (14001:2015), Indian Green Building Council Accredited Professionals, Experts of Green campus Lead Auditors and Botanists / Zoologists / Biotechnologists were selected to conduct the Green campus audit process.

During the audit, the nature of plants and animals / birds species present in the campus were recorded. Establishment of lawns, trees, herbs, shrubs and climbers and establishment of terrace / kitchen / herbal / zodiac / ornamental / medicinal garden / aquarium and aquatic (hydrophytes) plants in the campus were recorded. Labelling of common names and Botanical names of plants were observed. The operation of the water irrigation system, trip and sprinkler irrigation methods and use of recycled water for irrigation purpose or any other purpose in the campus area were noted. The number of water wells, bore wells and water reservoir facilities in the campus were also noted as per the Audit Manual of Gnanamangai *et al.* (2018).

Attempts made for water scarcity during summer season towards the maintenance of plants and frequency of watering for plantations in the campus were noted. Biodiversity conservation education, projects, awareness programmes, etc., through Indian Biodiversity Act and Ministry of Environment, Forests and Climate Change, Government of India and the conduct of outreach programmes for dissemination of Green campus motto were recorded (Venkataraman, 2009). Conduct of outreach programmes for dissemination of Green campus motto to the students and staff members including public domain and signing of MoU with Government and Non-Governmental Organizations to ensure green campus activities for future generation were noted. Technology driven solutions initiated by the Green campus organization can also be disseminated and documented successively for propagating the attitude of the Green campus in wider masses.

The purpose of the green audit is to ensure that the practices followed in the campus are in accordance with the Green and Environment Policy developed by the Government and private agencies working with environment sustainable development adopted by the institution. The criteria, methods/procedures, checklists and recommendations used in the audit were based on the identified risks. The methodology includes: preparation and filling up of questionnaire along with checklists, physical inspection of the campus, observation and review of the document, interviewing responsible persons and data analysis, measurements and recommendations. The methodology adopted for this audit was a four step process comprising of data collection, data analysis, best practices followed in the campus and recommendations and suggestions given to the organization to improve the greeneries practices further.

6.1. Study of Flora and Fauna diversities at Dr.N.G.P. Arts and Science College

Dr.N.G.P Arts and Science College Campus is located about 4 km from

Coimbatore International Airport. College campus has Greenary with a well-to-do flora and faunal diversity. The campus is clean and green. Biodiversity provides a useful measure of the quality of the environment and the ecological studies are important aspects of environment, in view of the consideration of environmental quality and protection of natural flora and fauna.

6.2. Documentation of Plant species at Dr.N.G.P. Arts and Science College

Various vascular plant species were collected across Dr.N.G.P Arts and Science College campus and subjected to identify them based on botanical name, family, habitat, uses and anthropogenic disturbances to the natural vegetation in campus. The plants were freshly collected and their digital photographs were also taken. The collected plant specimens have been identified using taxonomic literatures (Gamble and Fischer, 1915-1936; Matthew, 1983; Nair and Henry, 1983; Henry *et al.*, 1989; Chandrabose and Nair, 1988). Further, their identification was confirmed by matching with authentic specimens in the Madras Herbarium (MH), Botanical Survey of India, Southern Circle, Coimbatore, India.

Key to Plant Families Identification

1a. Seeds enclosed in fruit wall, Perianth Present	2
b. Seeds not enclosed in fruit wall, perianth absent	Gymnosperm
2a. Leaves usually net veined seeds-2	3
b. Leaves parallel veined, seeds-1	66
3a. Petals free	4
b. petals connate	
4a. Corolla and calyx present	
b. Corolla and calyx absent	
5a. calyx of united sepals; ovary inferior	
b. Calyx of distict or unit sepals; ovary syncarpous	
6a. Sepals imbricate in bud	7
b. Sepals valvate in bud	24
7a. Sepals more or less united at the base	
b. Sepals free	
8a. Stamens more than 12	9
b. Stamens 10 or fewer	
9a. Sepals 2-3	11
b. Sepals 4 or more	
10a. Stamens inserted on the disck	
b. Stamens inserted of the gynophore	
11a. Trees, Petals more or like the sepals; carpels free	Mangnoliaceae
b. Herbs, petals coloured unlike the sepals; carpels united	
12a. Plants with yellow sap, Flowers pedicelled	
B. Plants with watery sap, Flowers sessile	Portulacaceae
13a. Flowers unisexual,gynoecium apocarpus	Menispermaceae
b. Flowers bisexual, gynoecium Syncarpous	
14a. Petals 4, Stamens 6	
b. Petals 5, Stamens ∞	
15a. Ovary1, loculated	16
b. Ovary 2-more loculated	17

16a. Flowers actinomorphic, placentas free- central	Caryophyllaceae
b. Flowers zygomorphic, placentas parietal	Viloaceae
17a. Filaments of anthers more or less united	
b. Filaments of anthers more or less united	
18a. Leaves stipulate; stamens 5 or 10	19
b. Leaves exstipulate; stamens usually 8	Sapindaceae
19a. Style 5; stamen 5	
b. Style many; stamens 10	
20a. Leaves pellucid-gland dotted	
b. Leaves not gland dotted	
21a. Placentas parietal; Fruit elongated	Moringaceae
b. Placentas axile; Fruits not elongated	
22a. Ovules and seeds pendulous; sometimes horizontal	
b. Ovules and seeds erect or ascending	
23a. Stamens alternate with the petals	
b. Stamens opposite the petals	
24a. Leaves simple; Flowers 3-merous	
b. Leaves compound; Flowers 4-6 merous	
25a. Filaments of anther united into a columnar toothed cup	
b. Filaments of anther free; rarely connate at the base in ring	
26a. Stamens 15; anther united	
b. Stamens 2; anther free	
27a. Anther unilocular; pollen muricate	
b. Anther bilocular; pollen smooth	
28a. Stamens 4-5; usually embraced and adnate to the base of the p	
b. Stamen many; atleast twice as many as and free from the petal	
29a. Shrub	
b. Straggler	•
30a. Anther dehisce by slits; fruits capsule	
	Tiliaceae
· ·	
b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae
b. Anther dehisce by spores; fruits drupe31a. Ovary sycarpous; placentas 3-5, arietal	Elaeocarpaceae
b. Anther dehisce by spores; fruits drupe31a. Ovary sycarpous; placentas 3-5, arietalb. Ovary 1 or more free, placentas basal	Elaeocarpaceae 32 33
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae 32 33 Passifloraceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae 32 33 Passifloraceae Turneraceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae 32 33 Passifloraceae Turneraceae ls or loculi34 Combretaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae 32 33 Passifloraceae Turneraceae ls or loculi34 Combretaceae 35 37
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae 32 33 Passifloraceae Turneraceae ls or loculi34 Combretaceae 35 37 36 Mimosaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae 32 33 Passifloraceae Turneraceae ls or loculi34 Combretaceae 35 37 36 36 Mimosaceae sFabaceae Caesalpiniaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae 32 33 Passifloraceae ls or loculi34 Combretaceae 35 37 36 Mimosaceae sFabaceae Caesalpiniaceae Cucurbitaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae
 b. Anther dehisce by spores; fruits drupe	Elaeocarpaceae 32 33 Passifloraceae Turneraceae ls or loculi34 Combretaceae 35 37 36 Mimosaceae sFabaceae Caesalpiniaceae Cucurbitaceae 38 Cactaceae

h. Comale and stales and its difference baset	_
b. Carpels and styles united throughoutMyrtaceae	
40a. Flowers in dichasial – polychasial cymeMolluginacea	
b. Flowers in clustered, cymes or solitaryAizoacea	
41a. Ovary inferior, stamens as many as the corolla lobes	
b. Ovary superior, stamens numerous43	
42a. Anther free; ovary 2-loculed; stipulateRubiaceae	
b. Anther syngenesious; ovary 1-loculed, exstipulateAsteraceae	
43a. Ovary 1-loculed; placentation free centralPlumbaginacea	
b. Ovary 2-many loculed; placentation axile or parietal4	.4
44a. Ovary 3 or more carplelledSapotaceae	e
b. Ovary 2-carpelled45	
45a. Corolla actinomorphic	5
b. Corolla zygomorphic	0
46a. Plants leafless; parasiticCuscutace	eae
b. Plants leafy ; not parasitic	
47a. Leaves opposite; stamens 24	8
b. Leaves alternate; stamens 4 or more	
48a. Leaves not scabrid, corolla tube white: fruits berryOleacea	ae
b. Leaves scabrid; corolla tube orange; fruits capsulesNyctanthacea	e
49.a. Anther inseperratable; corona presentAsclepidiace	eae
b. Anther seperatable; corona absentApocyanace	eae
50a. Corolla lobes imbricate ;fruit drupeBoraginacea	e
b. Corolla lobes plicate; fruit capsule	
51.a Ovary cells many ovulatedSolanaceae	
b.Ovary cells 1-4 ovuled	
52.a Carpels 2 or more ovulated ; fruits dehiscent	3
b.Carpels 1 –ovulated ; fruits indehiscent	
53.a Fruits dehiscent; seeds supported on reticulaeAcanthacea	
b.Fruits indehiscent; seeds not supported on reticulae	
54.a Leaves compound; fruits elongated; seeds wingedBignoniace	eae
b. Leaves simple; fruits not elongated, seeds not winged	
55.a Ovules many on swollen placentas; seeds albuminousScropulariacea	e
b.Ovules 2 lobed placenta ; seeds not albuminous	
56.a Flowers solitary; axile placentationPedaliaceae	
b. Flowers raceme; axile placentation	-
57.a Ovary entire, style terminal	e
b. Ovary 4 –lobed, style gynobasicLamiace	
58.a Flower bisexual	
b. Flower unisexual	
59.a. Ovary inferior)
b. Ovary superior	,
60.a Ovary 4-6 loculated; ovules manyAristolochiaceae	e
b. Ovary 1-loculated; ovules 1-4Santalaceae	
61.a Perianth not tubular	
b. Perianth trubularNyctaginaceae	C
62a. Leafless trees; brachlets ribbed and joined at the nodesCasuarinace	еае
b.Leaves well developed ; brachlets not ribbed and not joined at the nodes	
o. Deaves wen developed, ordenets not noted and not joined at the nodes	.05

63 a. Ovary 1- loculed; ovules 1-2 in each loule	64
b. Ovary 2 or more loculed; ovules 1 or 2 in each locule	65
64a. Leaves glandular	Euphorbiaceae
b. Leaves eglandular	Urticaceae
65a. Filaments inflexed in bud with reversed anther	Moraceae
b.Filaments not inflexed in bud, not with reversed anther	Ulmaceae
66a. Terrestrial or epiphytic	67
b. Aquatic, marsh or riparian	Cyperaceae
67a. Arbrorescent woody; leaf blade many nerved articulate with	
b. Herbs with herbaceous culms; leaf blade sessile not articulate v	vith sheath68
68a. Perianth 0 or reduced to scale	Araceae
b. Perianth present	69
70a. Plant armed	
b.Plant unarmed	72
71a. Plants Xerophytic; leaves fibrous	Agavaceae
b. Plants not xerophytic; leaves nor fibrous	Lilliaceae
72 a. Perianth segments connate	
b. Perianth segments free	
73a. Outer perianth calycine; inner coroline	
b. Outer and inner perianth	74

6.3. Documentation of Animal species at Dr.N.G.P. Arts and Science College

Animals like Mammals and Birds were observed by visual sightings and by calls also the avifaunal data were observed through the Nikon 8 x 40 binoculars and photographs were taken by Canon 600 D camera (55-250 mm). The recorded data was noted in the field work note. They were identified with the help of field guide- "Birds of Indian subcontinent" by Richard Grimmett, and the IUCN category of the birds were also noted with the same. The point count and transect line methods were used to record the number of bird species in the study area in which regular visits and personal visits were carried out (Ferenc et al., 2014). The surveys were conducted to understand the distribution of bird species in relation to habitats and nesting behavior of birds in the study area. Based on survey richness and abundance of bird species were calculated using Shannon-weaver diversity index. Based on available data and species were selected for nest site selection study. Selected species of birds was analyses for its nest site characteristics between the habitats and also plant species preference was enumerated and assessed. The number of breeding bird species and nests found in different habitats as depend variables such as biotic and biotic factors as the indepent variable (Jayson and Mathew, 2000; Beebee and Griffiths, 2000).

7. Green Campus Audit Observations

It covers both qualitative and quantitative measurements including physical observation of greeneries in terms of growing of terrestrial plants and animals. Biodiversity conservation strategies are very essential to conserve a variety of plant and animal species in the campus ecosystem. Best practices followed on green campus initiatives in the Organization and recommendations for greening are illustrated in the audit report.

7.1. Flora and Faunal diversity in Dr.N.G.P. Arts and Science College The institution has rich floral and faunal diversity and the details are given below.

S.No	Botanical name	Family
1	Cocos nucifera Linn.	Arecaceae
2	Peltophorumferrugineum (DC.) Hayne	Fabaceae
3	Tectona grandisL.f.	Lamiaceae
4	Azardiracta indicaA.Juss	Meliaceae
5	Delonix regia (Boj. Ex Hook.) Raf.	Fabaceae
6	Samanea saman Jacq.	Fabaceae
7	Pongamia glabra (Vent.)	Fabaceae
8	Eugenia jambolana Lam.	Myrtaceae
9	Dalbergia latifoliaRoxb	Fabaceae
10	Micheliachampaca Linn.	Magnoliaceae
11	Bassia longifolia Linn.	Sapotaceae
12	Artocarpus integrifoliaL.f.	Moraceae
13	Melia dubia Cav.	Meliaceae
14	Eucalyptus grandis L.	Myrtaceae
15	Bambusadenrocalamus	Poaceae
16	Ficus religiosa Linn	Moraceae
17	Mimusopselengi Linn.	Sapotaceae
18	PolyalthialongifoliaBenth.	Annonaceae
19	Calophylluminophyllum Linn.	Clusiaceae
20	Araucaria excelsa Lamb.	Araucariaceae
21	Schefflera actinophylla (Endl.)	Araliaceae
22	Cassia fistula L.	Fabaceae
23	Nerium oleander L.	Apocynaceae
24	Nerium indicum Mill	Apocynaceae
25	<i>Plumeria alba</i> Linn.	Apocynaceae
26	Plumeria rubra Linn.	Apocynaceae
27	Ficus benjamina L.	Moraceae
28	Ficus elastica L.	Moraceae
29	Casuarina equisetifolia L.	Casuarinaceae
30	Phoenix dactylifera L.	Arecaceae
31	Vinca rosea L.	Apocynaceae
32	Bougainvillea spectabilis Wild	Nyctaginaceae
33	Allamanda schottii	Apocynaceae
34	Musa paradisiaca Linn.	Musaceae
35	Ixora coccinea Linn.	Rubiaceae
36	Quisqulis indica	Combretaceae
37	Hibiscus rosa-sinensis L.	Malvaceae
38	Heliconia brasiliensis	Heliconiaceae
39	MorindatinctoriaRoxb.,	Rubiaceae
40	Psidium guajava L.	Myrtaceae

41	Carica papaya L.	Caricaceae
42	Punica granatum Linn.	Punicaceae
43	Moringa oleifera Linn	Moringaceae
44	Tamarindus indica Linn	Caesalpinaceae
45	Gomphrena globosa L.	Amaranthaceae
46	Aibizialebbeck (L.)Benth	Fabaceae
47	Ficus benghalensis L.	Moraceae
	Plectranthus barbatus Andrews	Lamiaceae
48	Celosia argentea L.	Amaranthaceae
49	Phyllanthus acidus L.	Euphorbiaceae
50	Millingtonia hortensisL.f.	Bignoniaceae
51	Borassus flabellifer L.	Arecaceae
52	Cascabelathevetia	Apocynaceae
53	Millingtonia hortensisL.f.	Bignoniaceae
54	Thespesia populnea L Sol ex Correa	Malvaceae
55	Citrus limon (L.) Burm.f.	Rutaceae
56	Acalypha hispida L	Euphorbiaceae
57	Tithonia diversifolia (Hemsl.) A.Gray	asteraceae
58	Cycas revolutaThunb.	Cycadaceae
59	Pisonia alba Span	Nyctaginaceae
60	Caryotaurens L.	Arecaceae
61	Lantana camara l	verbenaceae

Dr.N.G.P. Arts and science college(Autonomous)		
Green Audit		
HERBAL GARDEN		
LIST OF PLANTS		
S.No	Botanical Name	Family
1	Phyllanthus niruri Linn.,	Euphorbiaceae
2	Euphorbia hirta Linn.	Euphorbiaceae
3	Acalypha indica Linn.	Euphorbiaceae
4	Vinca rosea L.	Apocynaceae
5	Aerva lanata L.	Amaranthaceae
6	Boerhavia diffusa Linn.	Nyctaginaceae
7	Euphorbia heterophylla L.	Euphorbiaceae
8	Solanum nigrum Linn.	Solanaceae
9	Nerium oleander L.	Apocynaceae
10	Costus speciosus Koen Ex. Retz.	Costaceae
11	Murraya koenijii L.	Rutaceae
12	Lawsonia inermis Linn.	Lythraceae
13	Ocimum tenuiflorum L.	Lamiaceae
14	Plectranthus barbatus Andrews	Lamiaceae
15	Cardiospermum halicacabum L.	Sapindaceae
16	Chrysanthemum coronarium L.	Asteraceae
17	Citrus limon (L.) Burm. F.	Rutaceae
18	Phyllanthus acidus L.	Euphorbiaceae
19	Eclipta prostrata L	Asteraceae
28	Solanum trilobatum L.	Solanaceae
29	Aloe vera (L.) burm. F.	Xanthorrhoeaceae
30	Andrographis paniculata (Burm.f.) Wall	Acanthaceae
	Epipremnum aureum (Linden &	
31	Andre)	Araceae
32	Cissus quadrangularis L	Vitaceae
33	Centella asiatica L. Urban	Apiaceae
34	Abutilon indicum (Link) Sweet	Malvaceae
35	Moringa oleifera Lam.	Moringaceae
36	Vitex negundo L.	Lamiaceae
37	Justicia adhatoda L.	Acanthaceae
38	Melia azedarach L.	Meliaceae
39	Trichodesma indicum L.	Boraginaceae
40	Baliospermum montanum Blume	Euphorbiaceae
	Calotropis procera (Aiton)	
41	W.Aiton	Apocynaceae
42	<i>Emilia sonchifolia</i> (L.) DC. Ex Wight	Asteraceae
43	Andrographis echioides	Acanthaceae
44	Ocimum basilicum L.	Lamiaceae
	Alternanthera sessilis (L.) R.Br. ex	
45	DC	Amaranthaceae
46	Tridax procumbens L.	Astraceae

47	Hibiscus rosa-sinensis L.	Malvaceae
48	Oxalis corniculata	Oxalidaceae
49	Azardiracta indica A.Juss	Meliaceae
50	Mentha arvensis	Lamiaceae
51	Rhinacanthus nasutus	Acanthaceae
52	Kalanchoe pinnata	Crassulaceae
53	Bauhinia racemose	Caesalpinioideae
54	Commelina benghalensis L.	Commelinaceae
55	Bougainvillea spectabilis Wild	Nyctaginaceae
56	Bassia longifolia Linn.	Sapotaceae
	Peltophorum ferrugineum (DC.)	
57	Hayne	Fabaceae
58	Pisonia alba Span	Nyctaginaceae

S.No	Common Name	Scientific Name
1	Common babbler	Turdoidescaudata
2	Common Myna	Acridotherestristis
3	Common house	Corvussplendens
	Crow	
4	Jungle Crow	Corvusmacrorhynchos
5	House Sparrow	Passer Domesticus
6	Common Drongo	Dicrurusadsimilis
7	Blue rock pigeon	Columba livia
8	Grey Francolin	Francolinuspondicerianus
9	Plain Prinia	Priniainornata
10	Red-wattled	Vanellusindicus
	Lapwing	
11	Red vented bulbul	Pycnonotuscafer
12	Purple Sunbird	Cinnyrisasiaticus
13	Rose ringed	Psittaculakrameri
	parakeet	
14	White-breasted	Halcyon smyrnensis
	kingfisher	
15	Bat	
16	SpottedOwlet	Athenebrama
17	Indian thick-knee	Burhinusindicus
18	Emerald dove	Chalcophapsindica

List of Birds

List of Animals

S.No	Common Name	Scientific Name
0.110		
1	Indian Palm Squirrel	Funambuluspalmarum
2	Indian pariah dog	Canis lupus familiaris
3	Cat	Feliscatus
4	Little skimmer	Orthetrumtaeniolatum
5	Indian peafowl	Pavocristatus
6	black rat	Rattusrattus

7.2. An account of more Oxygen producing and Carbondioxide absorbing plants in the Campus

There are some plants which are being considered highly efficient in oxygen production and carbondioxide absorption which in turn reflected the quality of the green campus. If more oxygen is made available in the campus naturally, the stakeholders may be free from various cardiovascular and pulmonary problems and breathing troubles. The college campus has several oxygen producing plants and trees. The notable species are Azadirachta indica, Nerium oleander L., Thespesia populnea L Sol ex Correa, Bamboosa aridinarifolia.

Thespesia populnea

Azadirachta indica

7.3. Rainwater Harvesting System

Rainwater harvesting system is a traditional old practice not only in drought prone areas and also in areas having seasonal rainfall. The Indian traditional rainwater harvesting is being practiced in various parts of the country to improve the ground water status (Musayev et al., 2015; Khanal et al., 2018). Now the threatening features of the lower ground level of water has created a revamp of newly featured rainwater harvesting systems. Indian traditional rainwater harvesting systems are constructed based on three modes either direct pumped, indirect pumped or by gravity alone in the campus. In addition, lakes, bonds, water channels and any other water reservoir

Nerium oleander

Bamboosa aridinarifolia

methods are considered as the rainwater harvesting system. The green campus should have adopted any of the above said modes of rainwater harvesting or any new methods that has the benefit of conserving the water resource as well. A small square shaped pit containing gravels and sands may be constructed near the building in which rainwater will be harvested from the roof of the building using a pipe. There was two rain water harvesting system in the college campus.

Rain Water Harvesting pit in front of A1 Block

Rain water harvesting pit in front of B1 Block

8. Best practices followed on Green Campus initiatives in the Organization

- 1. It is observed that Dr.N.G.P.Arts and Science College is maintaining the green cover area after building construction as per the guidelines of World Green Building Council and Indian Green Building Council to provide a healthy environment and ecofriendly atmosphere to the stakeholders.
- 2. Dr.N.G.P Arts and Science Collegehas established rainwater harvesting models to recharge the borewells by collecting rainwaters from the building roofs, open areas and playgrounds including unexplored areas which are channelized to flow of rainwaters to increase the ground water level.
 - 3. The campus has an oxygen producing and carbon-di-oxide absorbingplants such as oxygen producing plants and trees. The notable species are *Azadirachta indica*, *Nerium oleander* L., *Thespesia populnea* L Sol ex Correa, Bamboosa aridinarifolia.

9. Recommendations for Greening

- Suggested to create a 'Herbal Garden' to increase the amount of medicinal plants that are used for various types of illnesses and also to maintain the environment's sustainability.
- Suggested to conduct a survey of non-flowering plants in the campus.
- Suggested to conduct a survey of faunal biodiversity in the campus other than Mammals, Birds, Butterflies and Mosquitos which were already completed a brief survey.

10. Acknowledgement

Nature Science Foundation, Coimbatore, Tamil Nadu, India is grateful to the Hon'ble Vice-Chancellor and Registrar and IQAC Coordinator of Dr.N.G.P.Arts and Science College, Coimbatore, Tamil Nadu for providing us necessary facilities and cooperation during the Green Campus Audit. This helped us in making the audit a magnificent success. Further, we hope this will boost the new generation to take care of the environment and propagate these views for many generations to come by the Dr.N.G.P.Arts and Science College Management.

11. References

- Adeniji, A.A. 2008. Audit and Assurance Services. Lagos: Value Analyst Concept of Green Audit. New Age International, New Delhi, India.
- Aparajita, G. 1995. Environmental Audits- a Mean to Going Green. *Development Alternatives***5** (4): 7-9.
- APHA, 1981. *Standard methods for the estimation of water and wastewater*. Vol. II, 15th edn, Washington, US.
- Arora, D.P. 2017. Environmental Audit–need of the hour. *International Journal of Advanced Research in Engineering & Management* **3** (4): 25-31.
- Beebee, T.J.C. and Griffiths, R.A. 2000. Amphibians and Reptiles. A Natural History of the British Herpetofauna. The New Naturalist Library, London, UK.
- Chandrabose, M. and Nair, N.C. 1988. Flora of Coimbatore, Bishen Singh and Mahendra Pal Singh, Dehra Dun, India.
- Ferenc, M., Sedlacek, O., Fuchs, R., Dinetti, M., Fraissinet, M. and D. Storch 2014. Are cities different?. Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. *Global Ecology and Biogeography* 23: 479-489.
- Gamble, J.S. and Fischer, C.E.C 1915-1936. *The Flora of the Presidency of Madras*. Vols. 1 3. Rep. Ed. 1957. Adlard and Sons Ltd., London, UK.
- Gnanamangai, B.M., Murugananth, G. and Rajalakshmi, S. 2018. A Manual on Environment Management Audits to Educational Institutions and Industrial Sectors. Laser Park Publishing House, Coimbatore, Tamil Nadu, India, p. 127.
- Gowri, S. and Harikrishnan, V. 2014. Green computing: Analyzing power consumption using local cooling. *International Journal of Engineering Trends and Technology* **15** (3): 105-107.
- Henry, A.N., Chitra, V. and Balakrishnan, N.P. 1989. Flora of Tamil Nadu. Vol. 3. Botanical Survey of India, Coimbatore, Tamil Nadu, India.
- IGBC, 2018. Indian Green Building Council. https://igbc.in/igbc/
- ISO, 2018. International Organization for Standardization. https://www.iso.org/home.html.
- Jayson, E.A. and D.N. Mathew, 2000. Diversity and species-abundance distribution of birds in the tropical forests of Silent Valley, Kerala. *Journal of the Bombay Natural History Society* 97 (3): 390–399.

- Khanal, G., Thapa, A., Devkota, N. and Paudel, U.R. 2018. A review on harvesting and harnessing rainwater: an alternative strategy to cope with drinking water scarcity. *Water Supply***20**: 2951- 2963.
- Lauder, A., Sari, R.F., Suwartha, N. and Tjahjono, G. 2015. Critical review of a global campus sustainability ranking: Green Metric. *Journal of Cleaner Production***108**: 852–863.
- Matthew, K.M. 1983. The flora of Tamilnadu Carnatic. The Repinat Herbarium, Tiruchirapalli, Tamil Nadu, India.
- Musayev, S., Burgess, E. and Mellor, J. 2015. A global performance assessment of rainwater harvesting under climate change.*Resources, Conservation and Recycling* 132: 62–70.
- Nair, N.C. and Henry, A.N. 1983. Flora of Tamil Nadu, India. Ser. 1: Analysis. Vol. 1. Botanical Survey of India, Coimbatore, Tamil Nadu, India.
- NCP, 2006. *National Environmental Policy-2006*, Government of India, Ministry ofEnvironment and Forest, New Delhi.
- Pradip, J.S. and Patil, P.D. 2014. Green Audit A tool for attaining sustainable development and achieving competitive advantage. *IBMRD's Journal of Management & Research*, **3** (1): 85-93.
- Satean, G. 2017. The need to go beyond "Green University" ideas to involve the community at Naresuan University, Thailand. Springer Nature, Sustainability Through Innovation in Product Life Cycle Design. pp. 841-857.
- Suwartha, N. and Sari, R.F. 2013. Evaluating UI Green Metric as a tool to support green universities development: Assessment of the year 2011 Ranking. *Journal of Cleaner Production***61**: 46–53.
- Tiyarattanachai, R. and Hollmann, N.M. 2016. Green Campus initiative and its impacts on quality of life of stakeholders in Green and Non-Green Campus universities. *SpringerPlus*, **5**(1): 1-17.
- Verma, S., Ahmad, M. and Parwal, R. 2012. Green audit A Boom to human civilization. International Journal of Trends in Economics Management & Technology, 1 (6): 82-86.
- Venkataraman, K. 2009. India's Biodiversity Act 2002 and its role in conservation. *Tropical Ecology***50** (1): 23-30.

જ્તિવ.

(Mrs. Rajalakshmi Jayaseelan) Chairman of NSF Certified ISO QMS & EMS Auditor

(Dr. D. Vinoth Kumar) Joint Director of NSF & Botanist Certified Lead Eco Auditor

B. Hythial

(Dr. B. Mythili Gnanamangai) Certified Auditor IGBC AP & ASSOCHAM Indian Green Building Council

(Er. B. Vijayalakshmi) Certified Energy & Environment Auditor Environmental Management System (ISO 14001:2015)

